Электроэнцефалография

Электроэнцефалограмма. Множественные комплексы пик-волна при эпилепсии.

Электроэнцефалография (аббревиатура — ЭЭГ; от др.-греч. ἥλεκτρον — электрон, янтарь, ἐγκέφαλος — головной мозг и γραμμα — запись) — раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи волосистой части головы, а также метод записи таких потенциалов. Также ЭЭГ — неинвазивный метод исследования функционального состояния головного мозга путём регистрации его биоэлектрической активности.

Электроэнцефалография измеряет колебания напряжения в результате ионного тока в нейронах головного мозга. Клинически электроэнцефалограмма является графическим изображением спонтанной электрической активности мозга в течение определенного периода времени, записанной с нескольких электродов на мозге или поверхности скальпа[1][2].

ЭЭГ — чувствительный метод исследования, он отражает малейшие изменения функции коры головного мозга и глубинных мозговых структур во временном измерении, обеспечивая миллисекундное временное разрешение, не доступное другим методам исследования мозговой активности, в частности ПЭТ и фМРТ.

Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т. д.

На электроэнцефалограммах заметна ритмичность электрической активности мозга. Различают целый ряд ритмов, обозначаемых буквами греческого алфавита.

Также электроэнцефалография используется для выявления потенциалов, связанных с событиями — откликов мозга, являющихся непосредственным результатом определенного ощущения, когнитивного или моторного события[3].

Недостатком является высокая чувствительность прибора к движениям и тремору, обусловленному психоэмоциональным напряжением пациента, вызывает помехи в работе, что может затруднить диагностику[4].

Недостатком электроэнцефалографии является также низкое пространственное разрешение, гораздо более слабое, чем у гемодинамических методов измерения, таких как фМРТ, ПЭТ и функциональная ближняя инфракрасная спектроскопия (англ. Functional near-infrared spectroscopy — fNIRS). В отличие от гемодинамических методов, для ЭЭГ определение местоположение источников электрического потенциала является обратной задачей, которая не может быть точно решена, а только оценена. Таким образом, ЭЭГ хорошо подходит для исследования вопросов о скорости нейронной активности и хуже для исследования вопросов о местоположении такой активности[3].


История[ | ]

Начало изучению электрических процессов мозга было положено Д. Реймоном (Du Bois Reymond) в 1849 году, который показал, что мозг, так же как нерв и мышца, обладает электрогенными свойствами.

24 августа 1875 года английский врач Ричард Катон (R. Caton) (18421926) сделал доклад на заседании Британской медицинской ассоциации. В этом докладе он представил научному сообществу свои данные по регистрации от мозга кроликов и обезьян слабых токов. В том же году независимо от Кэтона русский физиолог В. Я. Данилевский в докторской диссертации изложил данные, полученные при изучении электрической активности мозга у собак. В своей работе он отметил наличие спонтанных потенциалов, а также изменения, вызываемые различными стимулами.

В 1882 году И. М. Сеченов опубликовал работу «Гальванические явления на продолговатом мозгу лягушки», в которой впервые был установлен факт наличия ритмической электрической активности мозга. В 1884 году Н. Е. Введенский для изучения работы нервных центров применил телефонический метод регистрации, прослушивая в телефон активность продолговатого мозга лягушки и коры больших полушарий кролика. Введенский подтвердил основные наблюдения Сеченова и показал, что спонтанную ритмическую активность можно обнаружить и в коре больших полушарий млекопитающих.

Начало электроэнцефалографическим исследованиям положил украинский психолог В. В. Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму, записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Также Правдич-Неминский вводит термин электроцереброграмма.

Первая запись ЭЭГ человека получена немецким психиатром Гансом Бергером в 1924 году. Он же предложил запись биотоков мозга называть «электроэнцефалограмма». Работы Бергера, а также сам метод энцефалографии получили широкое признание лишь после того, как в мае 1934 года Эдриан (Adrian) и Мэттьюс (Metthews) впервые убедительно продемонстрировали «ритм Бергера» на собрании Физиологического общества в Кембридже.

Методика[ | ]

Процесс регистрации электроэнцефалографии

Регистрация ЭЭГ производится при помощи электроэнцефалографа через специальные электроды (наиболее распространённые — мостиковые, чашечковые и игольчатые). В настоящее время чаще всего используется расположение электродов по международным системам «10—20 %» или «10—10 %». Каждый электрод подключен к усилителю. Для записи ЭЭГ может использоваться бумажная лента (это устаревший вариант, широко применяемый во времена СССР и РФ вплоть до конца 2000-х годов) или сигнал может преобразовываться с помощью АЦП и записываться в файл на компьютере (современный вариант). Наиболее распространена запись с частотой дискретизации 250 Гц. Запись потенциалов с каждого электрода осуществляется относительно нулевого потенциала референта, за который, как правило, принимается мочка уха или сосцевидный отросток височной кости (processus mastoideus), расположенный позади уха и содержащий заполненные воздухом костные полости.

Характеристики ЭЭГ[ | ]

Для выделения на ЭЭГ значимых признаков её подвергают анализу. Основными понятиями, на которые опирается характеристика ЭЭГ, являются:

  • средняя частота колебаний;
  • их максимальная амплитуда;
  • их фаза;
  • также оцениваются различия кривых ЭЭГ на разных каналах и их временная динамика.

Суммарная фоновая электрограмма коры и подкорковых образований мозга пациента, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.

Ритмы ЭЭГ[ | ]

Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных возможностей восприятия при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита (альфа — 8—13 Гц, бета — 14—40 Гц, тета — 4—8 Гц, дельта — 0,5—3 Гц, гамма — выше 40 Гц и др.[источник не указан 3594 дня]).

В зависимости от частотного диапазона, а также от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм, бета-ритм, гамма-ритм, дельта-ритм, тета-ритм, каппа-ритм, мю-ритм, сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами[источник не указан 3511 дней].

Артефакты электроэнцефалограммы[ | ]

Артефакты электроэнцефалограммы — это возникающие в ходе процедуры электроэнцефалографического исследования помехи, которые представляют собой дефект записи.

В связи с тем, что современная аппаратура для проведения ЭЭГ регистрирует слишком малые величины биоэлектрических потенциалов, истинная электроэнцефалографическая запись может искажаться из-за воздействия разных физиологических и технических (физических) артефактов. Это зачастую может повлечь за собой трудности при расшифровке и интерпретации записи[5].

Виды артефактов:

  • Физические артефакты — артефакты, возникающие вследствие воздействия на аппаратуру для проведения ЭЭГ различных физических или технических помех. Это могут быть: обрыв проводника, плохой контакт электрода, так называемый «телефонный артефакт» (расположение телефонного аппарата рядом с проходящим процедуру ЭЭГ пациента, вследствие чего ЭЭГ-анализатор регистрирует электромагнитные волны из телефонного аппарата).
  • Физиологические артефакты — артефакты, возникающие из-за различных биологических процессов, которые протекают в организме пациента. Это могут быть: реограмма (РЭГ-артефакт), электрокардиограмма (ЭКГ-артефакт), электромиограмма (ЭМГ-артефакт) и другие[6].

См. также[ | ]

Примечания[ | ]

  1. Зенков Л. Р., 2004, с. 12.
  2. Niedermeyer E. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields / Niedermeyer E., da Silva F.L.. — Lippincott Williams & Wilkins, 2004. — ISBN 978-0-7817-5126-1.
  3. 1 2 Luck, Steven J. An Introduction to the Event-Related Potential Technique (англ.). — The MIT Press, 2005. — ISBN 978-0-262-12277-1.
  4. ЭЭГ ГОЛОВНОГО МОЗГА: что это такое, что показывает обследование электроэнцефалографии. Дата обращения: 22 декабря 2018.
  5. Гуляев С. А., Архипенко И. В. Артефакты при энцефалографическом исследовании: выявление и дифференциальный диагноз // Русский журнал детской неврологии. — Том 6 — 2012 — № 3 — С. 1—16
  6. Гуляев С. А. Электороэнцефалографическое исследование в клинике: проблема современной классификации // Русский журнал детской неврологии. — Том 6—9 — 2013 — № 4 — С. 35—41

Литература[ | ]

  • Гусельников В. И. Электрофизиология головного мозга. — М.: Высшая школа, 1976.
  • Зенков Л. Р. Клиническая электроэнцефалография (с элементами эпилептологии) / Зенков Л. Р.. — 3-е изд.. — Москва: Изд-во МЕДпресс-информ, 2004. — 368 с. — 3000 экз. — ISBN 5-901712-21-8.
  • Иванов Л. Б. Прикладная компьютерная электроэнцефалография. — М.: Антидор, 2000.
  • Жирмунская Е. А. Клиническая электроэнцефалография. — М.: МЭЙБИ, 1991.
  • Уолтер Грей Живой мозг. — М.: Мир, 1966.
  • Л. П. Павлова. Доминанты деятельного мозга. Системный психофизиологический подход к анализу ЭЭГ. СПб; ИНФОРМ-НАВИГАТОР, 2017. — 442 с.

Ссылки[ | ]