Электростатика

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика

Электростатика — раздел учения об электричестве, изучающий взаимодействие неподвижных электрических зарядов. Получил такое название благодаря греческому слову ήλεκτρον — янтарь, так как янтарь при трении электризуется и начинает притягивать мелкие предметы.

Издавна известно, что некоторые материалы, например янтарь, притягивают легкие предметы (пушинки, пылинки, кусочки бумаги). Электростатические явления возникают вследствие взаимодействия электрических зарядов друг с другом. Сила этого взаимодействия описывается законом Кулона. Несмотря на то, что электростатические силы могут показаться довольно слабыми, некоторые из них, например сила взаимодействия протона и электрона в атоме водорода, на 36 порядков больше, чем действующая между ними гравитационная сила.

Существует множество примеров электростатических явлений, начиная простым притяжением воздушного шарика к шерстяному свитеру, притяжение бумаги и тонера в лазерных принтерах, заканчивая спонтанным возгоранием зернохранилища вследствие электризации зерна.



Закон Кулона[ | код]

Закон Кулона утверждает, что:

«Сила взаимодействия двух точечных зарядов в вакууме пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.»

Эта сила направлена вдоль прямой, соединяющей эти заряды. Если заряды имеют одинаковы знак — они отталкиваются, если разный — притягиваются. Пусть — расстояние (в метрах) между двумя зарядами и , тогда абсолютная величина силы взаимодействия (в ньютонах) между ними будет равна:

где — электрическая постоянная вакуума, равная:

Ф/м.

Постоянная Кулона равна:

Н·м2·кг−2.

Использование ε0 вместо k0 в выражении закона Кулона связано с тем, что сила обратно пропорциональна площади поверхности сферы с радиусом, равным расстоянию между двумя зарядами.

Протон имеет заряд e, электрон имеет заряд −e. Величина е называется элементарный заряд и равна:

Физические константы (ε0, k0, e) в настоящее время определены так, что ε0 и k0 точно рассчитаны, а e — измеренная величина.

Электрическое поле[ | код]

Электрическое поле (линии со стрелками) положительного заряда (+) разделяет свободные заряды в проводниках. Явление разделения зарядов под действием электрического поля называется электростатическая индукция. Отрицательные заряды (синий) притягиваются и впоследствии перемещаются на поверхность проводника, обращенную к внешнему заряду. Положительные заряды (красный) отталкиваются и перемещаются на обратную сторону. Разделенные заряды равны и противоположны по знаку, поэтому электрические поля, созданные ими, компенсируют друг друга. Поэтому электрическое поле внутри проводников равно нулю, а потенциал — постоянная величина.

Электрическое поле — векторное поле, которое может быть определено в любой точке пространства вокруг заряда, исключая точку, в корой находится заряд (где поле равно бесконечности). Основной силовой характеристикой электрического поля является его напряженность . Она равна отношению силы , с которой поле действует на пробный точечный заряд, к величине этого заряда :

Визуализировать электрическое поле удобно с помощью силовых (полевых) линий. Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Векторы напряженности поля являются касательными к линиям напряженности, а плотность линий является мерой величины поля, то есть чем гуще силовые линии, тем сильнее поле в данной области пространства.

Принцип суперпозиции полей[ | код]

Если поле создается несколькими точечными зарядами, то на пробный заряд действует со стороны заряда такая сила , как если бы других зарядов не было. Результирующая сила определится выражением:

где — расстояние между зарядами и а - единичный вектор, характеризующий направление поля. Так как то  — результирующая напряженность поля в точке, где расположен пробный заряд , так же подчиняется принципу суперпозиции:

Теорема Гаусса[ | код]

Теорема Гаусса утверждает, что поток вектора электрической индукции через любую замкнутую поверхность пропорционален суммарному свободному электрическому заряду, заключённому внутри этой поверхности[1]. Утверждение можно записать в виде уравнения:

где  — элемент поверхности ,  — объёмная плотность свободного заряда,  — элемент объёма. Используя формулу Гаусса — Остроградского, можно записать данное уравнение в дифференциальной форме:

Уравнения Пуассона и Лапласа[ | код]

Определение электростатического потенциала в сочетании с дифференциальной формой закона Гаусса (выше) дает зависимость между потенциалом и плотностью заряда :

Это соотношение является формой уравнения Пуассона. При отсутствии свободного электрического заряда (когда объемная плотность равна нулю) уравнение становится уравнением Лапласа:

Работа и потенциал электростатического поля[ | код]

В основе электростатики лежит допущение того, что электростатическое поле является потенциальным (безвихревым):

Из этого допущения следует полное отсутствие изменяющихся во времени магнитных полей:

Однако, электростатика не требует отсутствия магнитных полей или электрических токов. Скорее, если магнитные поля или электрические токи существуют, то они не должны изменяться во времени, или, в худшем случае, они должны изменяться очень медленно.

Работа электрического поля[ | код]

Работа кулоновских сил при перемещении заряда зависит только от расстояний и начальной и конечной точек траектории.

Из механики известно определение элементарной работы:

Тогда, с учетом закона Кулона, работа, совершаемая полем заряда , при перемещении пробного заряда равна:

Так как , то интегрируя элементарную работу по получают:

Потенциал[ | код]

Электростатическое поле потенциально, кулоновские силы - консервативные, а работа консервативных сил может быть представлена как убыль потенциальной энергии, то есть:

Таким образом, потенциальная энергия точечного заряда в поле, созданном зарядом , определяется как

Если исследовать электростатическое поле заряда различными пробными зарядами , отношение

будет одинаковым для различных пробных зарядов, и это отношение называется потенциал. Потенциал является энергетической характеристикой электростатического поля, характеризующей потенциальную энергию , которой обладает единичный положительный пробный заряд , помещённый в данную точку поля:

Поскольку предполагается, что поле является безвихревым, его можно описать с помощью градиента потенциала. Электрическое поле направленно из области с высоким электрическим потенциалом в области с более низким. Математически это можно записать как

Используя формулу Гаусса—Остроградского можно показать, что разность потенциалов, так же известная как напряжение, представляет собой работу, совершаемую полем, при перемещении единичного заряда из точки в точку :


Трибоэлектрический эффект[ | код]

Трибоэлектрический эффект представляет собой тип контактной электризации, при котором некоторые материалы приобретают заряд, когда они приводятся в контакт с другими материалами и затем разделяются. Один из материалов заряжается положительно, а другой приобретает отрицательный заряд. Полярность и величина создаваемых зарядов различаются в зависимости от материала, шероховатости поверхности, температуры, деформации и других свойств. Например, янтарь можно положительно зарядить при трении о шерсть. Это свойство, впервые описанное Фалесом Милетским, было первым электрическим явлением, исследованным людьми. Другие примеры материалов, которые могут получить заряд при трении включают стекло, потертое о шелк, и твердый каучук, потертый о мех.

Электростатика Максвелла[ | код]

Как уже упомянуто выше, Максвелл явился истолкователем идей Фарадея. Он облек эти идеи в математическую форму. Основание теории Максвелла заключается не в законе Кулона, а в принятии гипотезы, которая выражается в следующем равенстве:

Здесь интеграл распространяется по какой угодно замкнутой поверхности S, F обозначает величину электрической силы, которую испытывает единица электричества в центре элемента этой поверхности dS, ε обозначает угол, образуемый этой силой с внешней нормалью к элементу поверхности dS, К обозначает диэлектрический коэффициент среды, прилегающей к элементу dS, и Q обозначает алгебраическую сумму количеств электричества, заключающихся внутри поверхности S. Следствиями выражения (13) являются нижеследующие уравнения:

Эти уравнения более общи, чем уравнения (5) и (7). Они относятся к случаю каких угодно изотропных изолирующих сред. Функция V, являющаяся общим интегралом уравнения (14) и удовлетворяющая вместе с этим уравнению (15) для всякой поверхности, которая отделяет собой две диэлектрические среды с диэлектрическими коэффициентами K1 и K2, а также условию V = пост. для каждого, находящегося в рассматриваемом электрическом поле проводника, представляет собой потенциал в точке (x, у, z). Из выражения (13) также следует, что кажущееся взаимодействие двух зарядов q и q1, находящихся в двух точках, расположенных в однородной изотропной диэлектрической среде на расстоянии r друг от друга, может быть представлено формулой

то есть это взаимодействие обратно пропорционально квадрату расстояния, как это должно быть согласно закону Кулона.

Из уравнения (15) мы получаем для проводника:

Формулы эти более общие, чем вышеприведенные (9), (10) и (12).

представляет собой выражение потока электрической индукции через элемент dS. Проведя через все точки контура элемента dS линии, совпадающие с направлениями F в этих точках, мы получаем (для изотропной диэлектрической среды) трубку индукции. Для всех сечений такой трубки индукции, не заключающей внутри себя электричества, должно быть, как это следует из уравнения (14),

Не трудно доказать, что если в какой-либо системе тел электрические заряды находятся в равновесии, когда плотности электричества соответственно суть σ1 и ρ1 или σ2 и ρ2, то заряды будут в равновесии и тогда, когда плотности будут σ = σ1 + σ2 и ρ = ρ1 + ρ2  (принцип сложения зарядов, находящихся в равновесии). Равным образом легко доказать, что при данных условиях может быть только одно распределение электричества в телах, составляющих собой какую-либо систему.

Весьма важным оказывается свойство проводящей замкнутой поверхности, находящейся в соединении с землёй. Такая замкнутая поверхность является экраном, защитой для всего пространства, заключённого внутри неё, от влияния каких угодно электрических зарядов, расположенных с внешней стороны поверхности. Вследствие этого электрометры и другие измерительные электрические приборы окружаются обыкновенно металлическими футлярами, соединяемыми с землёй. Опыты показывают, что для таких электрических экранов нет надобности употреблять сплошной металл, вполне достаточно эти экраны устраивать из металлических сеток или даже металлических решёток.

Система наэлектризованных тел обладает энергией, то есть обладает способностью совершить определённую работу при полной потере своего электрического состояния. B электростатике выводится следующее выражение для энергии системы наэлектризованных тел:

В этой формуле Q и V обозначают соответственно какое-либо количество электричества в данной системе и потенциал в том месте, где находится это количество; знак ∑ указывает, что надо взять сумму произведений VQ для всех количеств Q данной системы. Если система тел представляет собой систему проводников, то для каждого такого проводника потенциал имеет одну и ту же величину во всех точках этого проводника, а потому в данном случае выражение для энергии получает вид:

Здесь 1, 2.. n суть значки разных проводников, входящих в состав системы. Это выражение может быть заменено другими, а именно, электрическая энергия системы проводящих тел может быть представлена или в зависимости от зарядов этих тел, или же в зависимости от потенциалов их, то есть для этой энергии могут быть применены выражения:

В этих выражениях различные коэффициенты α и β зависят от параметров, определяющих собой положения проводящих тел в данной системе, а также формы и размеры их. При этом коэффициенты β с двумя одинаковыми значками, как то β11, β22, β33 и т. д. представляют собой электроемкости (см. Электрическая ёмкость) тел, отмеченных этими значками, коэффициенты β с двумя различными значками, как то β12, β23, β24, и т. д., представляют собой коэффициенты взаимной индукции двух тел, значки которых стоят у данного коэффициента.

Имея выражение электрической энергии, мы получаем выражение для силы, какую испытывает какое-либо тело, значок которого i, и от действия которой параметр si, служащий для определения положения этого тела, получает приращение. Выражение этой силы будет

или

Электрическая энергия может быть представлена ещё иначе, а именно, через

В этой формуле интегрирование распространяется по всему беспредельному пространству, F обозначает величину электрической силы, испытываемой единицей положительного электричества в точке (x, у, z), то есть напряжённость электрического поля в этой точке, а K обозначает диэлектрический коэффициент в этой же точке. При таком выражении электрической энергии системы проводящих тел эту энергию можно рассматривать распределенной только в изолирующих средах, причём на долю элемента dxdyds диэлектрика приходится энергий . Выражение (26) вполне соответствует взглядам на электрические процессы, которые были развиты Фарадеем и Максвеллом.

Формула Грина[ | код]

Чрезвычайно важной формулой в электростатике является формула Грина, а именно:

В этой формуле оба тройные интеграла распространяются на весь объём какого-либо пространства А, двойные — на все поверхности, ограничивающие это пространство, ∆V и ∆U обозначают суммы вторых производных от функций V и U по x, у, z; n — нормаль к элементу dS ограничивающей поверхности, направленную внутрь пространства A.

Примеры[прояснить][ | код]

Пример 1[ | код]

Как частный случай формулы Грина получается формула, выражающая вышеприведенную теорему Гаусса. В Энциклопедическом Словаре не уместно касаться вопросов о законах распределения электричества на различных телах. Эти вопросы представляют собой весьма трудные задачи математической физики и для решения такой задачи употребляются различные способы. Приведем здесь только для одного тела, а именно, для эллипсоида с полуосями а, b, с, выражение поверхностной плотности электричества σ в точке (x, у, z). Мы находим:

Здесь Q обозначает все количество электричества, находящееся на поверхности этого эллипсоида. Потенциал такого эллипсоида в какой-нибудь точке его поверхности, когда вокруг эллипсоида находится однородная изотропная изолирующая среда с диэлектрическим коэффициентом K, выражается через

Электроёмкость эллипсоида получится из формулы

Пример 2[ | код]

Пользуясь уравнением (14), полагая только в нём ρ = 0 и K = пост., и формулой (17), мы можем найти выражение для электроёмкости плоского конденсатора с охранным кольцом и охранной коробкой, изолирующей слой в котором имеет диэлектрический коэффициент K. Это выражение имеет вид

Здесь S обозначает величину собирательной поверхности конденсатора, D — толщину изолирующего слоя его. Для конденсатора без охранного кольца и охранной коробки формула (28) будет давать только приближенное выражение электроёмкости. Для электроемкости такого конденсатора дана формула Кирхгофом. И даже для конденсатора с охранными кольцом и коробкой формула (29) не представляет вполне строгого выражения электроемкости. Максвелл указал ту поправку, какую надо сделать в этой формуле, чтобы получить более строгий результат.

Энергия плоского конденсатора (с охранными кольцом и коробкой) выражается через

Здесь V1 и V2 суть потенциалы проводящих поверхностей конденсатора.

Пример 3[ | код]

Для сферического конденсатора получается выражение электроемкости:

в котором R1 и R2 обозначают соответственно радиусы внутренней и внешней проводящей поверхности конденсатора. При помощи выражения для электрической энергии (формула 22) нетрудно устанавливается теория абсолютного и квадрантного электрометров (см. Электрометры).

Диэлектрическая проницаемость[ | код]

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электрических ёмкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого — слой испытуемого диэлектрика.

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F0), в другом случае — испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ0 и λ, получают K = λ02/ λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причём через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла даёт возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем[2]. Дальнейшее развитие теории этого вопроса и тесно соединённой с этим теории электрострикции (то есть теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа, П. Дюгема, Н. Н. Шиллера и некоторых др.

Граничные условия[ | код]

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К1 и К2.

Пусть в точках Р1 и Р2, расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V1 и V2, а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F1 и F2. Тогда для точки Р, лежащей на самой поверхности S, должно быть V1 = V2,

если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε2 угол, составляемый силой F2 с нормалью n2 (внутрь второго диэлектрика), и через ε1 угол, составляемый силой F1 с той же нормалью n2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своём направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

См. также[ | код]

Литература[ | код]

Примечания[ | код]

  1. Кондратьев И. Г., Миллер М. А. Гаусса теорема // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 420. — 707 с. — 100 000 экз.
  2. Helmhoitz, «Wissenschaftliche Abhandlungen», 1, стр. 798

Ссылки[ | код]