Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства.
Эйлерова характеристика пространства
обычно обозначается
.
Определения[ | ]
- Для конечного клеточного комплекса (в частности для конечного симплициального комплекса) эйлерова характеристика может быть определена как знакопеременная сумма

- где
обозначает число клеток размерности
.
- Эйлерова характеристика произвольного топологического пространства может быть определена через числа Бетти
как знакопеременная сумма:

- Это определение имеет смысл только если все числа Бетти конечны и обнуляются для всех достаточно больших индексов.
- Последнее определение обобщает предыдущее и обобщается на другие гомологии с произвольными коэффициентами.
Свойства[ | ]
- Эйлерова характеристика является гомотопическим инвариантом; то есть сохраняется при гомотопической эквивалентности топологических пространств.
- В частности, эйлерова характеристика есть топологический инвариант.
- Эйлерова характеристика любого замкнутого многообразия нечётной размерности равна нулю[1].
- Эйлерова характеристика произведения топологических пространств M и N равно произведению их эйлеровых характеристик:

Эйлерова характеристика полиэдров[ | ]
- Эйлерова характеристика двумерных топологических полиэдров может быть посчитана по формуле:
где Г, Р и В суть числа граней, рёбер и вершин соответственно. В частности, для односвязного многогранника верна формула Эйлера:

- Например, Эйлерова характеристика для куба равна 6 − 12 + 8 = 2, а для треугольной пирамиды 4 − 6 + 4 = 2.
Формула Гаусса — Бонне[ | ]
Для компактного двумерного ориентированного риманова многообразия (поверхности)
без границы существует
формула Гаусса — Бонне, связывающая эйлерову характеристику
с гауссовой кривизной
многообразия:

где
— элемент площади поверхности
.
- Существует обобщение формулы Гаусса — Бонне для двумерного многообразия с краем.
- Существует обобщение формулы Гаусса — Бонне на чётномерное риманово многообразие, известная, как теорема Гаусса — Бонне — Черна или обобщённая формула Гаусса — Бонне.
- Существует также дискретный аналог теоремы Гаусса — Бонне, гласящий, что Эйлерова характеристика равна сумме дефектов полиэдра, делённой на
[2].
- Существует комбинаторные аналоги формулы Гаусса — Бонне.
Ориентируемые и неориентируемые поверхности[ | ]
Эйлерова характеристика замкнутой ориентируемой поверхности связана с её родом g (числом ручек, то есть числом торов в связной сумме, представляющей эту поверхность) соотношением

Эйлерова характеристика замкнутой неориентируемой поверхности связана с её неориентируемым родом k (числом проективных плоскостей в связной сумме, представляющей эту поверхность) соотношением

Величина эйлеровой характеристики[ | ]
История[ | ]
В 1752 году Эйлер[3] опубликовал формулу, связывающую между собой количество граней трёхмерного многогранника. В оригинальной работе формула приводится в виде

где S — количество вершин, H — количество граней, A — количество рёбер.
Ранее эта формула встречается в рукописях Рене Декарта, опубликованных в XVIII в.
В 1812 году Симон Люилье распространил эту формулу на многогранники с «дырками» (например, на тела наподобие рамы картины). В работе Люилье в правую часть формулы Эйлера добавлено слагаемое
где
— количество дырок («род поверхности»). Проверка для картинной рамы: 16 граней, 16 вершин, 32 ребра, 1 дырка:
В 1899 году Пуанкаре[4] обобщил эту формулу на случай N-мерного многогранника:

где
— количество i-мерных граней N-мерного многогранника.
Если считать сам многогранник своей собственной единственной гранью размерности N, формулу можно записать в более простом виде:

Вариации и обобщения[ | ]
Примечания[ | ]
Литература[ | ]
См. также[ | ]