Факторпространство по подпространству

Факторпространство по подпространству в линейной алгебре — факторпространство, определяемое для векторного пространства по его подпространству как пространство над фактормножеством по отношению эквивалентности . Обозначение — .


Факторотображение[ | ]

Отображение , сопоставляющее каждому элементу из класс эквивалентности, в котором он лежит, называется факторотображением.

Факторотображение даёт возможность определить на векторную структуру, задав операции следующим образом:

Факторотображение на таком пространстве линейно.

Свойства факторотображения:

  1. , то есть  — эпиморфизм;
  2. , что эквивалентно .

Связанные определения[ | ]

Понятие факторпространства по подпространству позволяет определить:

  • кообраз линейного отображения ;
  • коядро линейного отображения , при условии что .
  • коразмерность ;
  • Фактор-полунорма в факторпространстве, порождённая полунормой .

Сопутствующие теоремы[ | ]

  • Существование снижения на кообраз:
  •  — хаусдорфово .
Хаусдорфовость полунормированного пространства, как известно, позволяет[уточнить] определить на нём норму, а по норме и метрику.
  • Признак полноты  — полны  — полно.
  •  — гиперплоскость .
  • Неравенства для подчинённой фактор-полунормы:

Литература[ | ]

  • Кутателадзе С. С. Основы функционального анализа. — 3-е изд. — Новосибирск: Изд-во Ин-та математики, 200. — 336 с. — ISBN 5-86134-074-9..