Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

и является частным случаем уравнения Гельмгольца.
Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.
С помощью дифференциального оператора

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как
В этом случае размерность пространства указывается явно (или подразумевается).
Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.
- Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".
Другие формы уравнения Лапласа[ | ]
- В сферических координатах
уравнение имеет вид

Особые точки
.
- В полярных координатах
уравнение имеет вид

Особая точка
.
- В цилиндрических координатах
уравнение имеет вид

Особая точка
.
См. также оператор набла в различных системах координат.
Применение уравнения Лапласа[ | ]
Уравнение Лапласа возникает во многих физических задачах механики, теплопроводности, электростатики, гидравлики. Большое значение оператор Лапласа имеет в квантовой физике, в частности в уравнении Шрёдингера.
Решения уравнения Лапласа[ | ]
Несмотря на то, что уравнение Лапласа является одним из самых простых в математической физике, его решение сопряжено с трудностями. Особенно трудным бывает численное решение из-за нерегулярности функций и наличия особенностей.
Общее решение[ | ]
Одномерное пространство[ | ]
В одномерном вещественном пространстве уравнение Лапласа, сводящееся к равенству нулю второй производной, имеет общим решением линейную функцию:

где
— произвольные постоянные.
Двумерное пространство[ | ]
Уравнению Лапласа на двумерном пространстве удовлетворяют аналитические функции. Аналитические функции рассматриваются в теории функций комплексного переменного, и класс решений уравнения Лапласа можно свести к функции комплексного переменного.
Уравнение Лапласа для двух независимых переменных формулируется в следующем виде

Если z = x + iy, и

то условия Коши — Римана являются необходимыми и достаточными для того, чтобы функция f(z) была аналитической:

И вещественная и мнимая части аналитических функций удовлетворяют уравнению Лапласа. Продифференцировав условия Коши — Римана, получаем

А это не что иное, как уравнение Лапласа для функции u. Точно также показывается, что функция v удовлетворяет уравнению Лапласа.
Задача Дирихле — краевые условия для уравнения Лапласа, когда искомая функция задана на ограниченной области и известны её значения на границе.
Задача Неймана — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной по нормали искомой функции на границе области — так называемые граничные условия второго рода.
Литература[ | ]