Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Матрицы и могут быть перемножены, если они совместимы в том смысле, что число столбцов матрицы равно числу строк .
Пусть даны две прямоугольные матрицы и размерности и соответственно:
Тогда матрица размерностью :
в которой:
называется их произведением.
Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что матрицы согласованы. В частности, умножение всегда выполнимо, если оба сомножителя — квадратные матрицы одного и того же порядка.
Таким образом, из существования произведения вовсе не следует существование произведения
Иллюстрация[ | ]
Произведение матрицABсостоит из всех возможных комбинаций скалярных произведений вектор-строк матрицыAи вектор-столбцов матрицыB. Элемент матрицы AB с индексами i, j есть скалярное произведение i-ой вектор-строки матрицы A и j-го вектор-столбца матрицы B.
Иллюстрация справа демонстрирует вычисление произведения двух матриц A и B, она показывает как каждые пересечения в произведении матриц соответствуют строкам матрицы A и столбцам матрицы B. Размер результирующей матрицы всегда максимально возможный, то есть для каждой строки матрицы A и столбца матрицы B есть всегда соответствующее пересечение в произведении матрицы.
Значения на пересечениях, отмеченных кружочками, будут:
В общем случае, произведение матриц не является коммутативной операцией. К примеру:
Элемент произведения матриц, приведённых выше, вычисляется следующим образом
Первая координата в обозначении матрицы обозначает строку, вторая координата — столбец; этот порядок используют как при индексации, так и при обозначении размера. Элемент на пересечении строки и столбца результирующей матрицы является скалярным произведением -й строки первой матрицы и -го столбца второй матрицы.
Это объясняет почему ширина и высота умножаемых матриц должны совпадать: в противном случае скалярное произведение не определено.
Обсуждение[ | ]
Увидеть причины описанного правила матричного умножения легче всего, рассмотрев умножение вектора на матрицу.
Последнее естественно вводится исходя из того, что при разложении векторов по базису действие (любого) линейного оператора A даёт выражение компонент вектора v' = Av:
То есть линейный оператор оказывается представлен матрицей, векторы — векторами-столбцами, а действие оператора на вектор — матричным умножением вектора-столбца слева на матрицу оператора (это частный случай матричного умножения, когда одна из матриц — вектор-столбец — имеет размер ).
(Равно переход к любому новому базису при смене координат представляется полностью аналогичным выражением, только в этом случае уже не компоненты нового вектора в старом базисе, а компоненты старого вектора в новом базисе; при этом — элементы матрицы перехода к новому базису).
Рассмотрев последовательное действие на вектор двух операторов: сначала A, а потом B (или преобразование базиса A, а затем преобразование базиса B), дважды применив нашу формулу, получим:
откуда видно, что композиции BA действия линейных операторов A и B (или аналогичной композиции преобразований базиса) соответствует матрица, вычисляемая по правилу произведения соответствующих матриц:
Определённое таким образом произведение матриц оказывается совершенно естественным и очевидно полезным (даёт простой и универсальный способ вычисления композиций произвольного количества линейных преобразований).
Сложность вычисления произведения матриц по определению составляет , однако существуют более эффективные алгоритмы[1], применяющиеся для больших матриц. Вопрос о предельной скорости умножения больших матриц, также как и вопрос о построении наиболее быстрых и устойчивых практических алгоритмов умножения больших матриц остаётся одной из нерешённых проблем линейной алгебры.
Первый алгоритм быстрого умножения больших матриц был разработан Фолькером Штрассеном[2] в 1969. В основе алгоритма лежит рекурсивное разбиение матриц на блоки 2Х2. Штрассен доказал, что матрицы 2Х2 можно некоммутативно перемножить с помощью семи умножений, поэтому на каждом этапе рекурсии выполняется семь умножений вместо восьми. В результате асимптотическая сложность этого алгоритма составляет . Недостатком данного метода является бо́льшая сложность программирования по сравнению со стандартным алгоритмом, слабая численная устойчивость и больший объём используемой памяти. Разработан ряд алгоритмов на основе метода Штрассена, которые улучшают численную устойчивость, скорость по константе и другие его характеристики. Тем не менее, в силу простоты алгоритм Штрассена остаётся одним из практических алгоритмов умножения больших матриц. Штрассен также выдвинул следующую гипотезу Штрассена: для сколь угодно малого существует алгоритм, при достаточно больших натуральныхn гарантирующий перемножение двух матриц размера за операций.
Дальнейшие улучшения показателя степени ω для скорости матричного умножения
Хронология улучшения оценок показателя степени ω для вычислительной сложности матричного умножения .
В дальнейшем оценки скорости умножения больших матриц многократно улучшались. Однако эти алгоритмы носили теоретический, в основном приближённый характер. В силу неустойчивости алгоритмов приближённого умножения в настоящее время они не используются на практике.
Алгоритм Пана (1978)
В 1978 Пан[3] предложил свой метод умножения матриц, сложность которого составила Θ(n2.78041).
Алгоритм Бини (1979)
В 1979 группа итальянских учёных во главе с Бини[4] разработала алгоритм умножения матриц с использованием тензоров. Его сложность составляет Θ(n2.7799).
Алгоритмы Шёнхаге (1981)
В 1981 Шёнхаге[5] представил метод, работающий со скоростью Θ(n2.695). Оценка получена с помощью подхода, названного частичным матричным умножением. Позже ему удалось получить оценку Θ(n2.6087).
Затем Шёнхаге на базе метода прямых сумм получил оценку сложности Θ(n2.548). Романи сумел понизить оценку до Θ(n2.5166), а Пан — до Θ(n2.5161).
В 1990 Копперсмит и Виноград[6] опубликовали алгоритм, который в модификации Вильямс Василевской[7]2011 года умножает матрицы со скоростью O(n2.3727). Этот алгоритм использует идеи, схожие с алгоритмом Штрассена. На сегодняшний день модификации алгоритма Копперсмита-Винограда являются наиболее асимптотически быстрыми. Но тот факт, что полученные улучшения ничтожны, позволяет говорить о существовании «барьера Копперсмита-Винограда» в асимптотических оценках скорости алгоритмов. Алгоритм Копперсмита-Винограда эффективен только на матрицах астрономического размера и на практике применяться не может.
Связь с теорией групп (2003)
В 2003 Кох и др. рассмотрели в своих работах[8] алгоритмы Штрассена и Копперсмита-Винограда в контексте теории групп. Они показали, что гипотеза Штрассена справедлива (т.е. минимальная сложность ограничена для любого ) , если выполняется одна из гипотез теории групп[9].
Степени матриц[ | ]
Квадратные матрицы можно многократно умножать сами на себя так же, как обычные числа, так как у них одинаковое число строк и столбцов.
Такое последовательное умножение можно назвать возведением матрицы в степень — это будет частный случай обычного умножения нескольких матриц. У прямоугольных матриц число строк и столбцов разное, поэтому их никогда нельзя возводить в степень.
Матрица A размерности n × n, возведённая в степень, определяется формулой
и обладает следующими свойствами (λ — некоторый скаляр):
Наивный способ вычисления степени матрицы — это умножать k раз матрицу A на результат предыдущего умножения, начиная с единичной матрицы, как это часто делают для скаляров.
Для диагонализируемых матриц существует лучший метод, основанный на использовании спектрального разложения матрицы A.
Ещё один метод, основанный на теореме Гамильтона — Кэли, строит более эффективное выражение для Ak, в котором в требуемую степень возводится скаляр, а не вся матрица.
Особый случай составляют диагональные матрицы.
Так как произведение диагональных матриц сводится к умножению соответствующих диагональных элементов, то k-ая степень диагональной матрицы A состоит из элементов, возведённых в требуемую степень:
Таким образом, возвести диагональную матрицу в степень несложно.
При возведении произвольной матрицы (не обязательно диагональной) в степень часто полезным оказывается использовать сначала свойства диагонализируемых матриц.
Используя умножение матриц и возведение матриц в степень, можно определить другие операции над матрицами. Например, матричная экспонента может быть определена через степенной ряд, матричный логарифм[en] — как обратная к матричной экспоненте функция и так далее.
↑Pan V. Ya, Strassen’s algorithm is not optimal — trilinear technique of aggregating uniting and canceling for constructing fast algorithms for matrix operations. — Proc. 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Mich., 1978
↑Bini D., Capovani M., Lotti G., Romani F. — complexity for approximate matrix multiplication. — Inform. Process. Lett., 1979
↑Schonhage A. Partial and total matrix multiplication. — SIAM J. Comput., 1981
↑Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9:251-280, 1990.