Семнадцатая проблема Гильберта — одна из 23 проблем Гильберта, которые Давид Гильберт высказал в 1900 году на II Международном конгрессе математиков в Париже и которые оказали исключительное влияние на развитие математики в XX веке. Формулировка задачи по Гильберту такова:
Пусть дана рациональная функция от переменных с вещественными коэффициентами, которая во всех вещественных точках, где она определена, принимает неотрицательные значения. Можно ли представить её в виде суммы квадратов рациональных функций, все коэффициенты которых вещественны?
|
Эмиль Артин дал положительное решение этого вопроса в 1927 году, но его решение было неконструктивным. Алгоритмическое решение было найдено Чарльзом Дельзеллом в 1984 году.
Вариации и обобщения[ | ]
- Существуют многочлены, которые неотрицательны при всех вещественных значениях аргументов, но не могут быть представлены в виде суммы квадратов других многочленов. Существование таких примеров было доказано Гильбертом.[1] Более явные примеры таких многочленов были даны Моцкиным (англ.) в 1967 году.
- Например, многочлены


- не могут быть представлены в виде суммы квадратов многочленов с вещественными коэффициентами. Но их можно представить в виде суммы квадратов рациональных функций, например,

- Известны явные необходимые и достаточные условия того, что многочлен является суммой квадратов других многочленов.[2]
- С 1950-х годов известно, что возможность представить многочлен в виде суммы квадратов многочленов связана с решением многомерной степенной проблемы моментов.
- Известно, что каждый неотрицательный многочлен может быть сколь угодно точно приближен (по
-норме вектора его коэффициентов) многочленами, которые являются суммой квадратов многочленов.[3]
Примечания[ | ]
Литература[ | ]