Псевдосфе́ра (или поверхность Бельтра́ми) — поверхность постоянной отрицательной кривизны, образуемая вращением трактрисы около её асимптоты. Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной.
История[ | ]
Впервые исследована Миндингом в 1839—1840 годах.
В частности, им было показано, что понятия группы движений и конгруэнтных фигур имеют смысл лишь на поверхностях постоянной кривизны. Название «псевдосфера» поверхности дал Бельтрами. Он же обратил внимание на то, что псевдосфера реализует локальную модель геометрии Лобачевского, наряду с проективной моделью и конформно-евклидовой моделью.
Характеристики[ | ]
Если трактрису задать в плоскости Oxz параметрическими уравнениями
,
,
,
то параметрическими уравнениями псевдосферы будут
,
,
,
.
Первая квадратичная форма:

Вторая квадратичная форма:

Гауссова кривизна псевдосферы постоянна, отрицательна и равна −1/a².
Площадь обоих раструбов псевдосферы совпадает с площадью сферы (
), объём — половина от объёма шара (
).
Вариации и обобщения[ | ]
Источники[ | ]
Литература[ | ]
- Александров А. Д., Нецветаев Н. Ю. Геометрия. — Наука, М., 1990. ISBN 978-5-9775-0419-5.
- Александров П. С. Что такое неэвклидова геометрия. — УРСС, М., 2007. ISBN 978-5-484-00871-1.
- Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии, — Факториал, М., 2000.
- Вольф Дж. Пространства постоянной кривизны, — Наука, М., 1982.