Длина многочлена

Высота и длина многочлена P с комплексными коэффициентами являются мерами его «размера».


Определение[ | ]

Для многочлена P степени n, заданного формулой

высота H(P) — это максимальная (по модулю) величина его коэффициентов:

а длина L(P) — это сумма модулей величин коэффициентов:

Связь с мерой Малера[ | ]

Мера Малера M(P) многочлена P также является мерой размера многочлена P. Три функции H(P), L(P) и M(P) связаны неравенствами

,

где является биномиальным коэффициентом.

Примечания[ | ]

Литература[ | ]

  • Peter Borwein. . — Springer-Verlag, 2002. — С. 2,3,142,148. — (CMS Books in Mathematics). — ISBN 0-387-95444-9.
  • K. Mahler. On two extremum properties of polynomials // Illinois J. Math.. — 1963. — Т. 7. — С. 681–701.
  • Andrzej Schinzel. Polynomials with special regard to reducibility. — Cambridge: Cambridge University Press, 2000. — Т. 77. — С. 212. — (Encyclopedia of Mathematics and Its Applications). — ISBN 0-521-66225-7.

Ссылки[ | ]