Делитель нуля

В общей алгебре элемент кольца называется[1]:

левым делителем нуля, если существует ненулевое такое, что
правым делителем нуля, если существует ненулевое такое, что

Далее всюду в данной статье кольцо считается нетривиальным, то есть в нём имеются элементы, отличные от нуля.

Элемент, который одновременно является и правым, и левым делителем нуля, называется делителем нуля. Если умножение в кольце коммутативно, то понятия правого и левого делителя совпадают. Элемент кольца, который не является ни правым, ни левым делителем нуля, называется регулярным элементом[2].

Ноль кольца называется несобственным (или тривиальным) делителем нуля. Соответственно, элементы, отличные от нуля и являющиеся делителями нуля, называются собственными (нетривиальными) делителями нуля.

Коммутативное кольцо с единицей, в котором нет нетривиальных делителей нуля, называется областью целостности[3].


Свойства[ | ]

Если не является левым делителем нуля, то равенство можно сократить на аналогично с правым делителем нуля. В частности, в области целостности сокращение на ненулевой множитель всегда возможно[3].

Множество регулярных элементов коммутативного кольца замкнуто относительно умножения.

Обратимые элементы кольца не могут быть делителями нуля[2]. Обратимые элементы кольца часто называют «делителями единицы», поэтому предыдущее утверждение можно сформулировать иначе: делитель единицы не может быть одновременно делителем нуля. Отсюда следует, что ни в каком теле или поле делителей нуля быть не может[4].

В коммутативном конечном кольце с единицей каждый ненулевой элемент либо обратим, либо является делителем нуля. Следствие: нетривиальное коммутативное конечное кольцо без делителей нуля является полем (существование в кольце единицы может быть строго доказано).

Линейно упорядоченное кольцо со строгим порядком (то есть если произведение положительных элементов положительно) не содержит делителей нуля[5], см. также ниже пример упорядоченного кольца с делителями нуля.

Нильпотентный элемент кольца всегда является (и левым, и правым) делителем нуля. Идемпотентный элемент кольца , отличный от единицы, также является делителем нуля, поскольку

Примеры[ | ]

Кольцо целых чисел не содержит нетривиальных делителей нуля и является областью целостности.

В кольце вычетов по модулю если k не взаимно просто с m, то вычет k является делителем нуля. Например, в кольце элементы 2, 3, 4 — делители нуля:

В кольце матриц порядка 2 или более также имеются делители нуля, например:

Поскольку определитель произведения равен произведению определителей сомножителей, произведение матриц будет нулевой матрицей только если определитель по крайней мере одного из сомножителей равен нулю. Несмотря на некоммутативность умножения матриц, понятия левого и правого делителей нуля в этом кольце совпадают; все делители нуля — это вырожденные матрицы с нулевым определителем.

Пример упорядоченного кольца с делителями нуля: если в аддитивной группе целых чисел положить все произведения равными нулю, то получится упорядоченное кольцо, в котором любой элемент является делителем нуля (единица тогда не является нейтральным элементом для умножения, так что получается кольцо без единицы)[6][7].

Примечания[ | ]

  1. Ван дер Варден. Алгебра, 1975, с. 51.
  2. 1 2 Зарисский, Самюэль, 1963, с. 19.
  3. 1 2 Ван дер Варден. Алгебра, 1975, с. 52.
  4. Ван дер Варден. Алгебра, 1975, с. 55.
  5. Нечаев, 1975, с. 90.
  6. Бурбаки Н. Алгебра. Алгебраические структуры. Линейная алгебра. — М.: Наука, 1962. — С. 137. — 517 с.
  7. Бурбаки Н. Алгебра. Многочлены и поля. Упорядоченные группы. — М.: Наука, 1965. — С. 272. — 299 с.

Литература[ | ]

Ссылки[ | ]