Витамины

Витами́ны (от лат. vita — «жизнь» и амин) — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи (в общем случае — из окружающей среды). Автотрофные организмы также нуждаются в витаминах, получая их либо путём синтеза, либо из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона[1]. Большинство витаминов являются коферментами или их предшественниками[2].

Витамины содержатся в пище в очень малых количествах и поэтому относятся к микронутриентам наряду с микроэлементами. К витаминам не относят не только микроэлементы, но и незаменимые аминокислоты[2][3].

Из-за отсутствия точного определения к витаминам в разное время причисляли разное количество веществ. На середину 2018 года известно 13 витаминов[3].

Наука на стыке биохимии, гигиены питания, фармакологии и некоторых других медико-биологических наук, изучающая строение и механизмы действия витаминов, а также их применение в лечебных и профилактических целях, называется витаминологией[4].

Общие сведения[ | код]

Витамины выполняют каталитическую функцию в составе активных центров разнообразных ферментов, а также могут участвовать в гуморальной регуляции в качестве экзогенных прогормонов и гормонов. Несмотря на исключительную важность витаминов в обмене веществ, они не являются ни источником энергии для организма (не обладают калорийностью), ни структурными компонентами тканей.

Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организме наступают характерные и опасные патологические изменения (заболевания), например, цинга и пеллагра.

С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: отсутствие витамина — авитаминоз, недостаток витамина — гиповитаминоз, избыток витамина — гипервитаминоз.

Большинство витаминов не синтезируются в организме человека и полностью должны поступать с пищей. Меньшинство составляют синтезируемые в организме: витамин D, который образуется в коже человека под действием ультрафиолетового света; витамин A, который может синтезироваться из предшественников, поступающих в организм с пищей; и ниацин, предшественником которого является аминокислота триптофан. Кроме того, витамины K и В3 обычно синтезируются в достаточных количествах симбиотической бактериальной микрофлорой толстой кишки человека[5].

В биологической науке нет строго определения витаминов, есть только необходимые признаки для причисления вещества к витаминам. Вещество, соответствующее следующим пяти признакам, может быть признано витамином[3]:

  1. органическое вещество;
  2. жизненно необходимое вещество, без которого развивается клиническая картина заболевания;
  3. организм не производит вещество в нужном количестве или не производит вообще;
  4. вещество требуется в минимальных количествах (для человека — менее 0,1 г в сутки, например, самая большая суточная рекомендованная доза у витамина С, и она равна 90 мг).

На 2012 год научным сообществом 13 веществ признано витаминами. Ещё несколько веществ, например карнитин и инозитол, находились на рассмотрении[6], но к 2018 году список витаминов не изменился[3]. Однако в школьных учебниках указано существенно большее число витаминов — до 80[3], например, в учебнике 2014 года написано про 20 витаминов[7].

Исходя из растворимости, витамины делят на жирорастворимые — A, D, E, K, и водорастворимые — C и витамины группы B. Жирорастворимые витамины накапливаются в организме, причём местом их накопления являются жировая ткань и печень. Водорастворимые витамины в существенных количествах не запасаются и при избытке выводятся с мочой. Это объясняет бо́льшую распространённость гиповитаминозов водорастворимых витаминов и гипервитаминозов жирорастворимых витаминов.

История[ | код]

Важность некоторых видов еды для предотвращения определённых болезней была известна ещё в древности. Так, древние египтяне знали, что печень помогает от куриной слепоты (ныне известно, что куриная слепота может вызываться недостатком витамина A). В 1330 году в Пекине Ху Сыхуэй опубликовал трёхтомный труд «Важные принципы пищи и напитков», систематизировавший знания о терапевтической роли питания и утверждавший необходимость разнообразить рацион для поддержания здоровья.

В 1747 году шотландский врач Джеймс Линд, пребывая в длительном плавании, провел своего рода эксперимент на больных матросах. Вводя в их рацион различные кислые продукты, он открыл свойство цитрусовых предотвращать цингу. В 1753 году Линд опубликовал «Трактат о цинге», где предложил использовать лимоны и лаймы для профилактики цинги. Однако эти взгляды получили признание не сразу. Тем не менее, Джеймс Кук на практике доказал роль растительной пищи в предотвращении цинги, введя в корабельный рацион кислую капусту, солодовое сусло[en] и подобие цитрусового сиропа. В итоге он не потерял от цинги ни одного матроса — неслыханное достижение для того времени. В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков. Это послужило причиной появления крайне обидной клички для матросов — лимонник. Известны так называемые лимонные бунты: матросы выбрасывали за борт бочки с лимонным соком.

Истоки учения о витаминах заложены в исследованиях российского ученого Николая Ивановича Лунина. Он скармливал подопытным мышам по отдельности все известные элементы, из которых состоит коровье молоко: сахар, белки, жиры, углеводы, соли. Мыши погибли. В сентябре 1880 года при защите своей докторской диссертации Лунин утверждал, что для сохранения жизни животного, помимо белков, жиров, углеводов, солей и воды, необходимы ещё и другие, дополнительные вещества. Придавая им большое значение, Н. И. Лунин писал: «Обнаружить эти вещества и изучить их значение в питании было бы исследованием, представляющим большой интерес». Вывод Лунина был принят в штыки научным сообществом, так как другие ученые не смогли воспроизвести его результаты. Одна из причин была в том, что Лунин в своих опытах использовал тростниковый сахар, в то время как другие исследователи использовали молочный — плохо очищенный и содержащий некоторое количество витамина B[8][9].

В 1895 году В. В. Пашутин пришел к выводу, что цинга является одной из форм голодания и развивается от недостатка в пище какого-то органического вещества, создаваемого растениями, но не синтезируемого организмом человека. Автор отметил, что это вещество не является источником энергии, но необходимо организму и что при его отсутствии нарушаются ферментативные процессы, что приводит к развитию цинги. Тем самым В. В. Пашутин предсказал некоторые основные свойства витамина C.

В последующие годы накапливались данные, свидетельствующие о существовании витаминов. Так, в 1889 году голландский врач Христиан Эйкман обнаружил, что куры при питании варёным белым рисом заболевают бери-бери, а при добавлении в пищу рисовых отрубей — излечиваются. Роль неочищенного риса в предотвращении бери-бери у людей открыта в 1905 году Уильямом Флетчером. В 1906 году Фредерик Хопкинс предположил, что помимо белков, жиров и углеводов пища содержит ещё какие-то вещества, необходимые для человеческого организма, которые он назвал «accessory food factors». Последний шаг был сделан в 1911 году польским учёным Казимиром Функом, работавшим в Лондоне. Он выделил кристаллический препарат, небольшое количество которого излечивало бери-бери. Препарат был назван «Витамайн» (Vitamine), от лат. vita — «жизнь» и англ. amine — «амин», азотсодержащее соединение. Функ высказал предположение, что и другие болезни — цинга, пеллагра, рахит — тоже могут вызываться недостатком определённых веществ.

В 1920 году Джек Сесиль Драммонд предложил убрать «e» из слова «Vitamine», потому что недавно открытый витамин C не содержал аминового компонента. Так «витамайны» стали «витаминами».[источник не указан 1971 день]

В 1923 году доктором Гленом Кингом было установлено химическое строение витамина С, а в 1928 году доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С, назвав его гексуроновой кислотой. Уже в 1933 швейцарские исследователи синтезировали идентичную витамину С столь хорошо известную аскорбиновую кислоту.

В 1929 году Хопкинс и Эйкман за открытие витаминов получили Нобелевскую премию, а Лунин и Функ — не получили. Лунин стал педиатром, и его роль в открытии витаминов была надолго забыта. В 1934 году в Ленинграде состоялась Первая всесоюзная конференция по витаминам, на которую Лунин (ленинградец) не был приглашён.

В 1910-х, 1920-х и 1930-х годах были открыты и другие витамины. В 1940-х годах было расшифровано химическое строение витаминов.

Последний ныне известный витамин B12 открыт в 1948 году[3].

Изучение витаминов успешно проводилось как зарубежными, так и отечественными исследователями, среди которых — А. В. Палладин, М. Н. Шатерников, Б. А. Лавров, Л. А. Черкес, О. П. Молчанова, В. В. Ефремов, С. М. Рысс, В. Н. Смотров, Н. С. Ярусова, В. Х. Василенко, А. Л. Мясникова и многие другие[9].

Большие дозы витамина C[ | код]

В 1970 году Лайнус Полинг, дважды лауреат Нобелевской премии — по химии 1954 г. и премии мира 1962 г., выпустил монографию «Витамин С и простуда» (англ. Vitamin C and the Common Cold), в которой на собственном опыте утверждал об эффективности больших доз витамина С в лечении ОРЗ. (Полинг, будучи болен одним из видов нефрита, был вынужден придерживаться жёсткой диеты и наверняка страдал от недостатка витаминов, ему витаминная терапия действительно помогла[3].)

Оформленная в виде книги статья Полинга стала бестселлером и к 1973 году переиздавалась дважды. В 1971 году он опубликовал новую статью о лечении рака витамином С. Научные журналы как правило отказывались публиковать его статьи о витаминах, как не выдерживающие критики, и, будучи активным и авторитетным общественным деятелем, он распространял свои идеи через СМИ. В результате моды на витамины спрос на них был столь велик, что вызвал дефицит витаминных препаратов. Ныне это рынок объёмом в десятки миллиардов долларов.[3][10]

Научные исследования, проводимые с 1940-х годов (задолго до книг Полинга), продемонстрировали отсутствие лечебного эффекта витаминов как при простуде и раке, так и прочих заболеваниях, кроме вызванных авитаминозами[11][10]. Даже сотрудники основанного им Института Лайнуса Полинга не обнаружили значимых лечебного и профилактического эффектов больших доз витамина С[12].

В исследованиях, проведённых в XXI веке по принципам доказательной медицины, польза применения витамина C для лечения простудных заболеваний также не подтвердилась, выявлены только небольшой профилактический эффект при стрессовых нагрузках и уменьшение симптомов[13][14]. При лечении рака результаты применения витамина С не отличались от плацебо, хотя в некоторых исследованиях повышалось качество жизни больных за счёт снижения токсикоза[15] [16].

Названия и классификация витаминов[ | код]

Витамины условно обозначаются буквами латинского алфавита: A, B, C, D, E, K. Впоследствии выяснилось, что некоторые из них являются не самостоятельными веществами, а комплексом отдельных витаминов. Так, например, хорошо изучены витамины группы В. Названия витаминов по мере их изучения претерпевали изменения (данные об этом приводятся в таблице). Современные названия витаминов приняты в 1956 году Комиссией по номенклатуре биохимической секции Международного союза по чистой и прикладной химии.

Для некоторых витаминов установлено также определённое сходство физических свойств и физиологического действия на организм.

До настоящего времени классификация витаминов строилась, исходя из растворимости их в воде или жирах. Поэтому первую группу составляли водорастворимые витамины C и вся группа B, а вторую — жирорастворимые витамины (липовитамины) A, D, E, K. Однако ещё в 1942—1943 годах академик А. В. Палладин синтезировал водорастворимый аналог витамина К — менадион. А за последнее время получены водорастворимые препараты аналогов других витаминов этой группы. Таким образом, деление витаминов на водо- и жирорастворимые до некоторой степени теряет своё значение.

Буквенное обозначение (устаревшие — в скобках) Химическое название согласно международной номенклатуре (другие названия — в скобках) Растворимость
(Ж — жирорастворимый
В — водорастворимый)
Последствия авитаминоза, физиологическая роль Верхний допустимый уровень Суточная потребность
A, A1


А2

Ретинол (аксерофтол, противоксерофтальмический витамин)
Дегидроретинол
Ж[17] Куриная слепота, ксерофтальмия 3000 мкг[17] 900 (взрослые), 400—1000 (дети) мкг рет. экв.[17]
B1 Тиамин (аневрин, антиневритный) В Бери-бери, синдром Гайе — Вернике Не установлен[17] 1,5 мг[17]
B2 Рибофлавин В Арибофлавиноз Не установлен[17] 1,8 мг[17]
B3
(РР)
никотинамид (никотиновая кислота, ниацинамид, противопеллагрический витамин) В Пеллагра 60 мг[17] 20 мг[17]
B5 Пантотеновая кислота и её соли, в частности, кальция пантотенат В Боли в суставах, выпадение волос, судороги конечностей, параличи, ослабление зрения и памяти. Не установлен 5 мг[17]
B6 Пиридоксин (адермин) В Анемия, головные боли, утомляемость, дерматиты и др. кожные заболевания, кожа лимонно-жёлтого оттенка, нарушения аппетита, внимания, памяти, работы сосудов 25 мг[17] 2 мг[17]
B7
(H)
Биотин (антисеборрейный фактор, фактор W, кожный фактор, коэнзим R, фактор X) В Поражения кожи, исчезновение аппетита, тошнота, отечность языка, мышечные боли, вялость, депрессия Не установлен 50 мкг[17]
B9
(Bc, M)
Фолиевая кислота (фолацин) и её соли − фолаты В Фолиево-дефицитная анемия, нарушения в развитии спинальной трубки у эмбриона 1000 мкг 400 мкг
B12 Цианокобаламин (антианемический) В Пернициозная анемия не установлен[17] 3 мкг[17]
C Аскорбиновая кислота (противоцинговый (антискорбутный) витамин В Цинга (лат. scorbutus — цинга), кровоточивость десен, носовые кровотечения[17] 2000 мг[17] 90 мг[17]
D, D1


D2
D3
D4
D5

Ламистерол
Эргокальциферол (кальциферол)
Холекальциферол
Дигидротахистерол
7-дегидротахистерол
Ж[17] Рахит, остеомаляция 50 мкг[17] 10—15 мкг[17][18]
E α-, β-, γ-токоферолы Ж[17] Нервно-мышечные нарушения: спинально-мозжечковая атаксия (атаксия Фридрейха), миопатии. Анемия[19]. 300 мг ток. экв.[17] 15 мг ток. экв.[17]
K, K1
K2
Филлохинон
Фарнохинон
Ж[17] Гипокоагуляция Не установлен[17] 120 мкг[17]
Следующие вещества ранее считались или были кандидатами в витамины, но в настоящее время не являются ими.
(B4) Холин В Предшественник нейромедиатора Ацетилхолина. При недостатке — отложения жира в печени, почечная недостаточность, кровотечения. 20 г 425—550 мг
(B8) Инозитол[# 1][# 2]


(инозит, мезоинозит)

В Нет данных Нет данных Нет данных
(B10) 4-Аминобензойная кислота[# 3] (n-Аминобензойная кислота, Парааминобензойная кислота, ПАБ) В Стимулирует выработку витаминов кишечной микрофлорой. Нет данных Не установлена
(B11, BT) Левокарнитин[# 1] В Нарушения метаболических процессов Нет данных 300 мг
(B13) Оротовая кислота[# 1] В Различные кожные заболевания (экзема, нейродермит, псориаз, ихтиоз) Нет данных 0,5—1,5 мг
(B15) Пангамовая кислота[# 1] В Нет данных Нет данных 50—150 мг
(N) Липоевая кислота, Тиоктовая кислота[# 1] Ж Необходима для нормального функционирования печени 75 мг 30 мг[17]
(P) Биофлавоноиды, полифенолы[# 1] В Ломкость капилляров Нет данных Нет данных
(U) Метионин[# 1][# 4]


S-метилметионинсульфоний-хлорид

В Противоязвенный фактор; витамин U (от лат. ulcus — язва) Нет данных Нет данных
Примечания
  1. 1 2 3 4 5 6 7 Витаминоподобное вещество
  2. В связи с синтезом этого соединения самим организмом из глюкозы и неизвестностью заболевания, связанного с его отсутствием в пище, в 1993 году его статус витамина подвергся сомнению[20].
  3. Аминокислота.
  4. Одна из незаменимых аминокислот.


Как правило, суточная норма витаминов различается в зависимости от возраста, рода занятий, сезона года, пола, беременности и др. факторов.

Разложение витаминов при кулинарной обработке[ | код]

Под воздействием факторов внешней среды (температуры, кислорода, солнечного света, кислот, щелочей в среде) витамины разрушаются и теряют свою биологическую активность. По степени чувствительности различные витамины обладают разными свойствами, некоторые проявляют высокую устойчивость, другие же быстро разрушаются. Это в первую очередь связано с тем, что витамины, в силу своего химического строения, являются высокоактивными соединениями, легко вступающими в химические реакции. С того момента, как молекула витамина появилась на свет естественным путём или с помощью химического синтеза, и до того момента, как она попадет в организм человека или животного, её судьба во многом зависит от условий хранения и переработки.

Главными факторами нестабильности витаминов являются:

  1. Кислород воздуха
  2. Перекиси
  3. Влага
  4. pH среды
  5. Ионы металлов (железа, меди)
  6. Солнечный свет
  7. Повышенная температура
  8. Микроорганизмы
  9. Ферменты
  10. Адсорбенты
Витамин К свету К окислению К восстановлению К нагреванию К ионам металлов К влажности Оптимальная рН
A +++ +++ ++ ++ + Нейтральная, слабощелочная
K3 ++ + ++ ++ +++ ++ Нейтральная, слабощелочная
B1 + ++ +++ +++ ++ ++ Слабокислая
B2 +++ + ++ ++ + Нейтральная
B3 + + Нейтральная
B5 ++ + Нейтральная
B6 + + ++ + Кислая
B9 ++ ++ ++ + + + Нейтральная
B12 ++ ++ + + Нейтральная
C + +++ + +++ +++ ++ Нейтральная, кислая
D3 +++ +++ ++ ++ ++ Нейтральная, слабощелочная
E + + ++ + + Нейтральная

+++ — высокочувствительный
++ — чувствительный
+ — слабочувствительный[21]

Из-за низкой устойчивости витамина C, чтобы сохранить его в готовом блюде (супе), при приготовлении пищи продукты, его содержащие, рекомендуется класть в кипящую воду, а не в холодную[3].

Антивитамины[ | код]

Антивитамины — группа органических соединений, подавляющих биологическую активность витаминов. Это соединения, близкие к витаминам по химическому строению, но обладающие противоположным биологическим действием. При попадании в организм антивитамины включаются вместо витаминов в реакции обмена веществ и тормозят или нарушают их нормальное течение. Это ведёт к витаминной недостаточности даже в тех случаях, когда соответствующий витамин поступает с пищей в достаточном количестве или образуется в самом организме.
Например, антивитаминами витамина B1 (тиамина) являются пиритиамин и фермент тиаминаза, вызывающие явления полиневрита[22].

Развитие исследований в области химиотерапии, питания микроорганизмов, животных и человека, установление химической структуры витаминов создали реальные возможности для уточнения наших представлений об антагонизме веществ также в области витаминологии. Вместе с тем, открытие антивитаминов способствовало более полному и углублённому изучению физиологического действия самих витаминов, так как применение в эксперименте антивитамина приводит к выключению действия витамина и соответствующим изменениям в организме; это в известной степени расширяет наши познания о функциях, которые тот или другой витамин несет в организме.

Антивитамины известны для почти всех витаминов. Их можно разделить на две основные группы:

  • К первой группе относятся химические вещества, которые инактивируют витамин путем его расщепления, разрушения или связывания его молекул в неактивные формы.
  • Ко второй группе относятся химические вещества, структурно подобные или структурно родственные витаминам. Эти вещества вытесняют витамины из биологически активных соединений и, таким образом, делают их неактивными. В результате действия антивитаминов обеих групп нарушается нормальное течение процесса обмена веществ в организме.

Поливитамины[ | код]

Ревит (Витамины А, В1, В2 и С)

Поливитаминные препараты — фармакологические препараты, содержащие в своём составе комплекс витаминов и минеральные соединения.

Поливитаминные препараты применяются как для профилактики и лечения гиповитаминозов, так и в комплексной терапии расстройств питания (гипотрофия, паратрофия).

Высокий уровень метаболизма у детей, не только поддерживающий жизнедеятельность, но и обеспечивающий рост и развитие детского организма, требует достаточного и регулярного поступления не только витаминов, но и макро- и микроэлементов. По мнению некоторых ученых, для российских детей и подростков актуально применение витаминно-минеральных комплексов[23].

В то же время, есть сведения[24] об увеличении риска смертности у людей больных раком и сердечными заболеваниями и сокращении продолжительности жизни при дополнительном приёме определённой группы витаминов.

Только около половины поливитаминных препаратов соответствуют суточным нормам потребления витаминов, также нередко состав поливитаминные препаратов отличается от написанного на упаковке[25].

Применение витаминов[ | код]

При авитаминозе и гиповитаминозе врач врач назначает витаминные препараты. Общие рекомендации:

  • При недостатке витамина В9 (фолиевая кислота и фолаты) есть риск дефектов развития плода у беременных женщин. Исходя из этого, дополнение витамина В9 для беременных продвигается ЮНЕСКО и Всемирной организации здравоохранения[3].
  • При больших физических нагрузках и длительных стрессах рекомендуется принимать витамин C (аскорбиновую кислоту)[3][12].
  • В регионах с неблагоприятными климатическими условиями детям рекомендуются Витаминно-минеральные комплексы[23].

По данным 2012 года не более 10 % популяции подвержены гиповитаминозу (по витамину A — около 1 %)[26]. Подавляющему количеству людей витаминные препараты (равно и другие пищевые добавки) принимать не нужно и нежелательно[27][3]. Например, основным источником витамина D в организме человека является его образование в коже в процессе загара, но не поступление с пищей[28].

Восполнять недостаток витаминов предпочтительно из пищевых продуктов (фруктов, овощей), а не аптечными препаратами[29].

Есть данные о том, что витамин Е за счёт антиоксидантных свойств поддерживает раковые клетки[30]. Также есть сведения, что у людей, регулярно принимающих витаминные препараты, выше смертность[24].

О пользе и вреде приёма витаминов см. также Поливитаминные препараты#Исследования.

См. также[ | код]

Примечания[ | код]

  1. Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей. — Учебное пособие. — Уфа: БГПУ, 2008. — 152 с. — 100 экз. — ISBN 978-5-87978-509-8.
  2. 1 2 Овчинников, 1987, с. 668.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 Водовозов.
  4. витаминология. Большой медицинский словарь. 2000.. Проверено 23 февраля 2012. Архивировано 30 мая 2012 года.
  5. Овчинников, 1987.
  6. Gerald, 2012.
  7. Сонин Н. И., Сапин М. Р. Витамины // Биология. Человек. 8 класс. — Учебник для 8 класса общеобразовательной школы. — М.: Дрофа, 2014. — 304 с. — (Вертикаль). — 40 000 экз. — ISBN 978-5-358-11055-7.
  8. Витамины // газета «Биология» (приложение к газете «Первое сентября»), № 23, июнь 1998
  9. 1 2 Шилов и Яковлев, 1960.
  10. 1 2 Русский Дом, 2016.
  11. Витамин С не спасает от простуды. Мембрана (28 июня 2005). Проверено 12 сентября 2018.
  12. 1 2 Jane Higdon, Victoria J. Drake, Giana Angelo, Balz Frei, Alexander J. Michels. Vitamin C (англ.). Linus Pauling Institute. Micronutrient Information Center of Linus Pauling Institute in the (14 January 2015). Проверено 12 сентября 2018.
  13. Vitamin C Can't Cure Common Cold (англ.). WebMD. Проверено 27 марта 2018.
  14. Hemilä H, Chalker E. Витамин C для профилактики и лечения простуды = Vitamin C for preventing and treating the common cold // Cochrane. — 2013. — 31 января. — DOI:10.1002/14651858.CD000980.pub4. — PMID 23440782.
  15. High-Dose Vitamin C (PDQ®). Health Professional Version (en_US). National Cancer Institute (13 декабря 2017). — «no significant differences between ascorbate−treated and placebo−treated groups for symptoms, performance status, or survival». Проверено 11 сентября 2018.
  16. Carmel Jacobsa, Brian Huttonb, Terry Nga, Risa Shorra and Mark Clemonsa. Is There a Role for Oral or Intravenous Ascorbate (Vitamin C) in Treating Patients With Cancer? A Systematic Review (англ.) // The Oncologist : The oficial journal of the Society for Transactional Oncology. — 2015. — February (vol. 20, no. 2). — P. 210−223. — DOI:10.1634/theoncologist.2014-0381.
  17. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» МР 2.3.1.2432-08
  18. С возрастом потребность в витамине D растёт. Потребность для лиц в возрасте от 18 до 60 лет — 10 мкг/сутки, для лиц старше 60 лет — 15 мкг/сутки.
  19. Brigelius-Flohé R, Traber MG (July 1999). «Vitamin E: function and metabolism». FASEB J. 13 (10): 1145–55. PMID 10385606.
  20. Reynolds, James E. F. Martindale: The Extra Pharmacopoeia. — Pennsylvania, 1993. — Vol. 30. — ISBN 0-85369-300-5.

    An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man.

  21. Кузьмин.
  22. Тимин Олег Алексеевич (к. мед. н., доцент РНИМУ). Витамин В1 (тиамин, антиневритный) // Лекции по общей биохимии 2018 год. Биохимия для студента. Проверено 16 сентября 2018.
  23. 1 2 Вильмс Е. А., Турчанинов Д. В., Боярская Л. А., Турчанинова М. С. Состояние минерального обмена и коррекция микроэлементозов у детей дошкольного возраста в крупном промышленном центре Западной Сибири. Педиатрия, 2010, том 89, № 1, с. 85—90
  24. 1 2 Миф о витаминах. Как вышло, что мы поверили в их пользу?. slon.ru. Проверено 14 февраля 2016.
  25. ConsumerLab.com, 2018.
  26. ConsumerLab.com, 2018: «Based on the latest data from the Centers for Disease Control and Prevention (CDC) in 2012, about 10% or less of the general population had nutrition deficiencies for selected vitamin and minerals».
  27. Компетентные решения в выборе питания. Руководство Разумного Потребителя Медицинских Услуг и Информации (5 ноября 2018). Проверено 12 сентября 2018.
  28. Кальций и Витамин Д для взрослых и детей разного возраста. Ответы на основные вопросы. Руководство Разумного Потребителя Медицинских Услуг и Информации (25 июля 2014). Проверено 12 сентября 2018.
  29. Водовозов: «потому что когда вы едите натуральную пищу, то она содержит помимо витаминов ещё кучу всего, в том числе и питание для нашей микрофлоры».
  30. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice (англ.) // Science Transactional Medicine. — 2014. — 29 January (vol. 6). — P. 221. — DOI:10.1126/scitranslmed.3007653. — PMID 24477002.

Ссылки[ | код]

Литература[ | код]

  • Кристофер Хоббс, Элсон Хаас. Витамины для «чайников» = Vitamins for Dummies. — М.: Диалектика, 2005. — 352 с. — ISBN 0-7645-5179-5.
  • Никитина Л. П., Соловьёва Н. В. Клиническая Витаминология. — Чита, 2002. — 66 с.
  • Морозкина Т. С., Мойсеёнок А. Г. Витамины: Краткое рук. для врачей и студентов мед., фармацевт. и биол. специальностей. — Мн.: ООО "Асар", 2002. — 112 с. — ISBN 985-6572-55-X.
  • Савченко А. А., Анисимова Е. Н., Борисов А. Г., Кондаков А. Е. Витамины как основа иммунометаболической терапии. — Красноярск.: КрасГМУ, 2011. — 213 с. — ISBN 978-5-94282-093-7.
  • Девятнин В. А. Витамины. — М.: Пищепромиздат, 1948. — 279 с.
  • Овчинников Ю. А. Витамины // Биоорганическая химия. — М.: Просвещение, 1987.
  • Шилов П. И. Справочник по витаминам: (для врачей) / проф. Шилов П. И., доц. Яковлев Т. Н.. — Л.: Медгиз, 1960. — 230 с. — 30 000 экз.
  • Gerald F. Combs, Jr. Chapter 1. What is a Vitamin? // The Vitamins. — Academic Press, 2012. — 598 с. — ISBN 978-0-12-381980-2.
  • Полинг Л. Витамин С и здоровье = Linus Pauling. Vitamin C and the Common Cold. 1970 / Пер. с англ. Т. Литвиновой и М. Слоним под ред. В. Н. Букина. — М.: Наука, 1974. — 80 с.
  • Камерон Ивен, Полинг Лайнус. Рак и витамин С. Обсуждение природы, причин, профилактики и лечения рака (Особая роль витамина С) = Ewan Cameron, Linus Pauling. Cancer and Vitamin C. 1971 / Под ред. М. Л. Карапетьянца. — М.: Кобра Интернэшнл, 2001. — 336 с.
  • Тимин Олег Алексеевич (к. мед. н., доцент РНИМУ). Витамины // Лекции по общей биохимии 2018 год. Биохимия для студента. Проверено 16 сентября 2018.